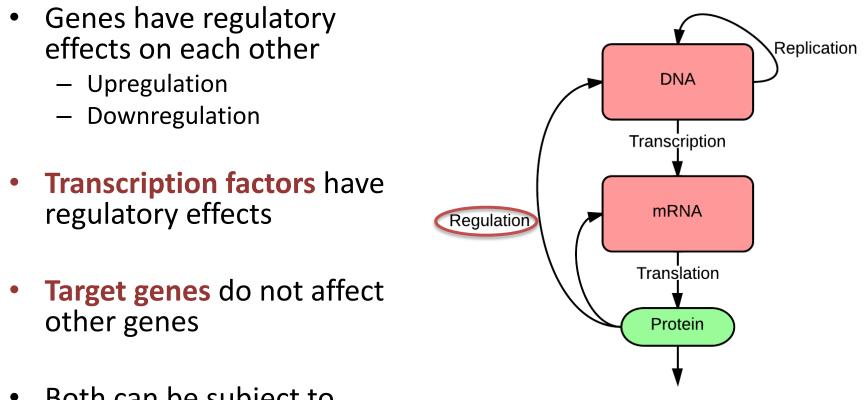
Clustering of Pathogenic Genes in Human Co-regulatory Network


Michael Colavita Mentor: Soheil Feizi Fifth Annual MIT PRIMES Conference May 17, 2015

Topics

Background

- Genetic Background
- Regulatory Networks
- The Human Regulatory Network
- Co-regulatory Networks
- Modularity
 - Purpose and Methods
 - Implementation
 - Results
- Clustering Algorithm
 - Goals
 - Algorithmic Basis
 - Initial Method and Progress

Genetic Background

 Both can be subject to regulation by other genes

Figure: The central dogma of molecular biology including gene regulation

Genetic Regulatory Networks

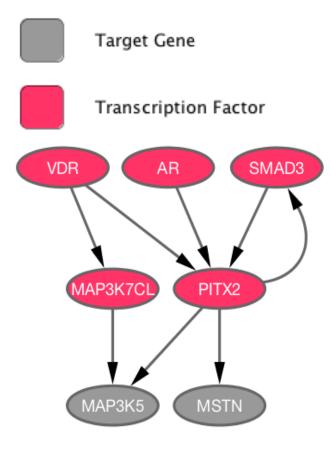
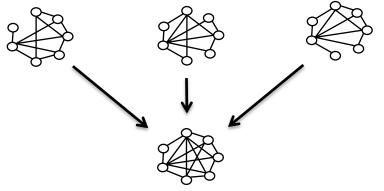



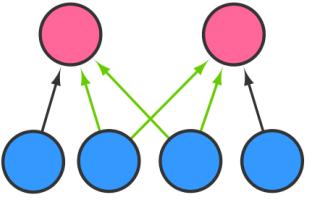
Figure: A small section of the human regulatory network

- Method of storing regulatory information in a computationally accessible format
 - Captures regulatory dynamics of a genome
 - Allows for the use of algorithms from the field of graph theory
- Nodes represent genes
- Directed edges indicate upregulatory effects
 - Edge weights indicate strength of regulatory activity

The Human Regulatory Network

- Primary dataset used for pulling regulation data
- Created by combining datasets into a unified network
 - Co-expression network
 - Motif network
 - ChIP network

- 2757 transcription factors
- 16464 target genes
- ~1,000,000 regulatory relationships (cutoff = .95)


Co-regulatory Networks

- Capture different relationships than regulatory networks
- Nodes still represent genes; edges represent similar regulatory profiles

$$\frac{\left|R_{a} \bigcirc R_{b}\right|}{\left|R_{a} \grave{\vdash} R_{b}\right|} \stackrel{3}{\rightarrow} C$$

Undirected network

Clustering is better defined

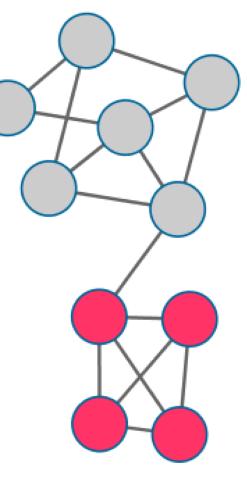
Topics

Background

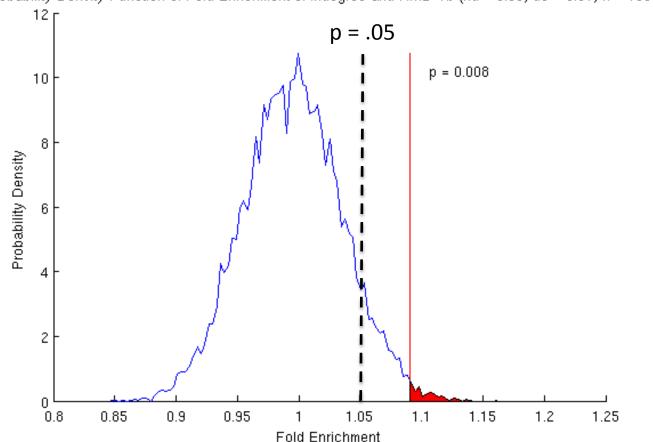
- Genetic Background
- Regulatory Networks
- The Human Regulatory Network
- Co-regulatory Networks

Modularity

- Purpose and Methods
- Implementation
- Results
- Clustering Algorithm
 - Goals
 - Algorithmic Basis
 - Initial Methodology and Progress


Motivations for Analysis

Pathogenic genes are associated with a specific genetic disease (dbGaP)


- Search for differences and patterns in how pathogenic genes are regulated
 - Understanding the basis of genetic diseases
 - Applications to gene therapy

Preliminary Analysis: Modularity

- Method of examining the types of connections in the network:
 - Non-pathogenic Non-pathogenic
 - Pathogenic Pathogenic
 - Non-pathogenic Pathogenic
- How does the number of edges between nodes of the same classification compare to the expected value (null model)?
 - Assortative (preference for same classification)
 - Disassortative (preference for different)

Hypothesis Test and P-value Example

Probability Density Function of Fold Enrichment of Indegree and AMD-1b (nd = 0.05, dc = 0.01, n = 10000)

Modularity Testing

- Analyzed 45 diseases across the network of 19,221 genes
 - MATLAB for parallel operations

- Possible outcomes:
 - Insignificant (p > 0.05)
 - Assortative (modular)
 - Disassortative

Modularity Results

- 12/45 (26.7%) diseases displayed statistically significant assortativity (p < 0.05)
 - Clopidogrel a, b, j, k, l (p = 0.01)
 - Cardiovascular disease risk
 - T1D
 - Type 1 Multiple Sclerosis
 - Psoriasis
- More connections between similarly classified genes than expected

Implications

- Suggests that the network contains communities of pathogenic and nonpathogenic genes
 - Potential for statistically significant clusters based on pathogenicity
- Significance of the co-regulatory structure

 Suggests that pathogenic genes share common regulatory characteristics

Topics

Background

- Genetic Background
- Regulatory Networks
- The Human Regulatory Network
- Co-regulatory Networks

Modularity

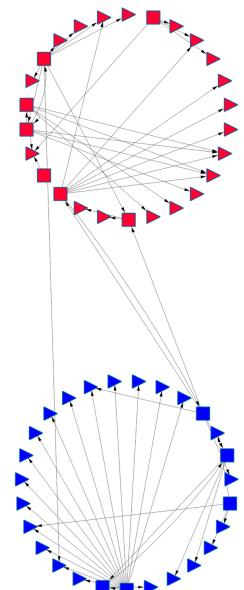
- Purpose and Methods
- Implementation
- Results

Clustering Algorithm

- Goals
- Algorithmic Basis
- Initial Methodology and Progress

Clustering

- Another point of interest for genetic diseases
- Typically based on connectivity
- Searching for cohesive regulatory units


 Based on modularity
- Provides more information about how genes interact
 - Identifies patterns in regulatory profiles

Co-regulatory Clustering Goals

- Identify clusters by combining network structure with pathogenicity classification
 - Combine co-regulation with common genetic disease associations
- Clusters should indicate groups of pathogenic genes that share regulatory profiles
 - Indicates regulatory patterns that can lead to genetic disease

Algorithmic Basis: Spectral Partitioning

- Goal: divide a network into two groups such that the modularity is minimized
- Method: use the sign of values in the second eigenvector of the graph Laplacian to determine classification
 - Estimation stemming from a constraint relaxation

Algorithmic Basis: Spectral Clustering

• Similar to spectral partitioning, but produces k clusters

- Basic Algorithm:
 - Define a similarity matrix that quantifies the similarity between two vertices
 - Use the similarity matrix to produce a graph Laplacian
 - Use the values in the first k eigenvectors as input to the k-means algorithm

Current Hybrid Algorithm

- Construct a similarity matrix S capturing the structure of the network and the classifications of vertices
 - Assign a similarity value based on pure connectivity
 - Scale these values for each pairing using their classifications
 - Genes of the same type will have a higher similarity
 - Genes of different types will have a lower similarity
- **Spectral clustering** is applied to *S*

Future Goals

- Continue work on the clustering algorithm
 - Incorporate shortest path and other measures of distance into the similarity matrix
 - Refine similarity values for pairings
- Extend study to examine genetic disease information
 - Linear mixed model for genome-wide association studies

Thank You

• To **MIT PRIMES** for providing this research opportunity

 To my mentor Soheil Feizi for his support, suggestions, and assistance

To Professor Manolis Kellis for suggesting the project